Перевод: с английского на все языки

со всех языков на английский

from Mannheim

  • 1 Benz, Karl

    [br]
    b. 25 November 1844 Pfaffenrot, Black Forest, Germany
    d. 4 April 1929 Ladenburg, near Mannheim, Germany
    [br]
    German inventor of one of the first motor cars.
    [br]
    The son of a railway mechanic, it is said that as a child one of his hobbies was the repair of Black Forest clocks. He trained as a mechanical engineer at the Karlsruhe Lyzeum and Polytechnikum under Ferdinand Redtenbacher (d. 1863), who pointed out to him the need for a more portable power source than the steam engine. He went to Maschinenbau Gesellschaft Karlsruhe for workshop experience and then joined Schweizer \& Cie, Mannheim, for two years. In 1868 he went to the Benkiser Brothers at Pforzheim. In 1871 he set up a small machine-tool works at Mannheim, but in 1877, in financial difficulties, he turned to the idea of an entirely new product based on the internal-combustion engine. At this time, N.A. Otto held the patent for the four-stroke internal-combustion engine, so Benz had to put his hopes on a two-stroke design. He avoided the trouble with Dugald Clerk's engine and designed one in which the fuel would not ignite in the pump and in which the cylinder was swept with fresh air between each two firing strokes. His first car had a sparking plug and coil ignition. By 1879 he had developed the engine to a stage where it would run satisfactorily with little attention. On 31 December 1879, with his wife Bertha working the treadle of her sewing machine to charge the batteries, he demonstrated his engine in street trials in Mannheim. In the summer of 1888, unknown to her husband, Bertha drove one of his cars the 80 km (50 miles) to Pforzheim and back with her two sons, aged 13 and 15. She and the elder boy pushed the car up hills while the younger one steered. They bought petrol from an apothecary in Wiesloch and had a brake block repaired in Bauschlott by the village cobbler. Karl Benz's comments on her return from this venture are not recorded! Financial problems prevented immediate commercial production of the automobile, but in 1882 Benz set up the Gasmotorenfabrik Mannheim. After trouble with some of his partners, he left in 1883 and formed a new company, Benz \& Cie, Rheinische Gasmotorenfabrik. Otto's patent was revoked in 1886 and in that year Benz patented a motor car with a gas engine drive. He manufactured a 0.8hp car, the engine running at 250 rpm with a horizontal flywheel, exhibited at the Paris Fair in 1889. He was not successful in finding anyone in France who would undertake manufacture. This first car was a three-wheeler, and soon after he produced a four-wheeled car, but he quarrelled with his co-directors, and although he left the board in 1902 he rejoined it soon after.
    [br]
    Further Reading
    St J.Nixon, 1936, The Invention of the Automobile. E.Diesel et al., 1960, From Engines to Autos. E.Johnson, 1986, The Dawn of Motoring.
    IMcN

    Biographical history of technology > Benz, Karl

  • 2 Reichenbach, Georg Friedrich von

    [br]
    b. 24 August 1772 Durlach, Baden, Germany
    d. 21 May 1826 Munich, Germany
    [br]
    German engineer.
    [br]
    While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.
    In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.
    At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.
    [br]
    Further Reading
    Bauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).
    W.Dyck, 1912, Georg v. Reichenbach, Munich.
    K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).
    WK

    Biographical history of technology > Reichenbach, Georg Friedrich von

  • 3 Forrester, Jay Wright

    [br]
    b. 14 July 1918 Anselmo, Nebraska, USA
    [br]
    American electrical engineer and management expert who invented the magnetic-core random access memory used in most early digital computers.
    [br]
    Born on a cattle ranch, Forrester obtained a BSc in electrical engineering at the University of Nebraska in 1939 and his MSc at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, where he remained to teach and carry out research. Becoming interested in computing, he established the Digital Computer Laboratory at MIT in 1945 and became involved in the construction of Whirlwind I, an early general-purpose computer completed in March 1951 and used for flight-simulation by the US Army Air Force. Finding the linear memories then available for storing data a major limiting factor in the speed at which computers were able to operate, he developed a three-dimensional store based on the binary switching of the state of small magnetic cores that could be addressed and switched by a matrix of wires carrying pulses of current. The machine used parallel synchronous fixed-point computing, with fifteen binary digits and a plus sign, i.e. 16 bits in all, and contained 5,000 vacuum tubes, eleven semiconductors and a 2 MHz clock for the arithmetic logic unit. It occupied a two-storey building and consumed 150kW of electricity. From his experience with the development and use of computers, he came to realize their great potential for the simulation and modelling of real situations and hence for the solution of a variety of management problems, using data communications and the technique now known as interactive graphics. His later career was therefore in this field, first at the MIT Lincoln Laboratory in Lexington, Massachusetts (1951) and subsequently (from 1956) as Professor at the Sloan School of Management at the Massachusetts Institute of Technology.
    [br]
    Principal Honours and Distinctions
    National Academy of Engineering 1967. George Washington University Inventor of the Year 1968. Danish Academy of Science Valdemar Poulsen Gold Medal 1969. Systems, Man and Cybernetics Society Award for Outstanding Accomplishments 1972. Computer Society Pioneer Award 1972. Institution of Electrical Engineers Medal of Honour 1972. National Inventors Hall of Fame 1979. Magnetics Society Information Storage Award 1988. Honorary DEng Nebraska 1954, Newark College of Engineering 1971, Notre Dame University 1974. Honorary DSc Boston 1969, Union College 1973. Honorary DPolSci Mannheim University, Germany. Honorary DHumLett, State University of New York 1988.
    Bibliography
    1951, "Data storage in three dimensions using magnetic cores", Journal of Applied Physics 20: 44 (his first description of the core store).
    Publications on management include: 1961, Industrial Dynamics, Cambridge, Mass.: MIT Press; 1968, Principles of Systems, 1971, Urban Dynamics, 1980, with A.A.Legasto \& J.M.Lyneis, System Dynamics, North Holland. 1975, Collected Papers, Cambridge, Mass.: MIT.
    Further Reading
    K.C.Redmond \& T.M.Smith, Project Whirlwind, the History of a Pioneer Computer (provides details of the Whirlwind computer).
    H.H.Goldstine, 1993, The Computer from Pascal to von Neumann, Princeton University Press (for more general background to the development of computers).
    Serrell et al., 1962, "Evolution of computing machines", Proceedings of the Institute of
    Radio Engineers 1,047.
    M.R.Williams, 1975, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Forrester, Jay Wright

  • 4 Bergius, Friedrich Carl Rudolf

    [br]
    b. 11 October 1884 Goldschmieden, near Breslau, Germany
    d. 31 March Buenos Aires, Argentina
    [br]
    [br]
    After studying chemistry in Breslau and Leipzig and assisting inter alia at the institute of Fritz Haber in Karlsruhe on the catalysis of ammonia under high pressure, in 1909 he went to Hannover to pursue his idea of turning coal into liquid hydrocarbon under high hydrogen pressure (200 atm) and high temperatures (470° C). As experiments with high pressure in chemical processes were still in their initial stages and the Technical University could not support him sufficiently, he set up a private laboratory to develop the methods and to construct the equipment himself. Four years later, in 1913, his process for producing liquid or organic compounds from coal was patented.
    The economic aspects of this process were apparent as the demand for fuels and lubricants increased more rapidly than the production of oil, and Bergius's process became even more important after the outbreak of the First World War. The Th. Goldschmidt company of Essen contracted him and tried large-scale production near Mannheim in 1914, but production failed because of the lack of capital and experience to operate with high pressure on an industrial level. Both capital and experience were provided jointly by the BASF company, which produced ammonia at Merseburg, and IG Farben, which took over the Bergius process in 1925, the same year that the synthesis of hydrocarbon had been developed by Fischer-Tropsch. Two years later, at the Leuna works, almost 100,000 tonnes of oil were produced from coal; during the following years, several more hydrogenation plants were to follow, especially in the eastern parts of Germany as well as in the Ruhr area, while the government guaranteed the costs. The Bergius process was extremely important for the supply of fuels to Germany during the Second World War, with the monthly production rate in 1943–4 being more than 700,000 tonnes. However, the plants were mostly destroyed at. the end of the war and were later dismantled.
    As a consequence of this success Bergius, who had gained an international reputation, went abroad to work as a consultant to several foreign governments. Experiments aiming to reduce the costs of production are still continued in some countries. By 1925, after he had solved all the principles of his process, he had turned to the production of dextrose by hydrolyzing wood with highly concentrated hydrochloric acid.
    [br]
    Principal Honours and Distinctions
    Nobel Prize 1931. Honorary doctorates, Heidelberg, Harvard and Hannover.
    Bibliography
    1907, "Über absolute Schwefelsäure als Lösungsmittel", unpublished thesis, Weida. 1913, Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung
    des Entstehungsprozesses der Steinkohle, Halle. 1913, DRP no. 301, 231 (coal-liquefaction process).
    1925, "Verflüssigung der Kohle", Zeitschrift des Vereins Deutscher Ingenieure, 69:1313–20, 1359–62.
    1933, "Chemische Reaktionen unter hohem Druck", Les Prix Nobel en 1931, Stockholm, pp. 1–37.
    Further Reading
    Deutsches Bergbau-Museum, 1985, Friedrich Bergius und die Kohleverflüssigung. Stationen einer Entwicklung, Bochum (gives a comprehensive and illustrated description of the man and the technology).
    H.Beck, 1982, Friedrich Bergius, ein Erfinderschicksal, Munich: Deutsches Museum (a detailed biographical description).
    W.Birkendfeld, 1964, Der synthetische Treibstoff 1933–1945. Ein Beitragzur nationalsozialistischen Wirtschafts-und Rüstungspolitik, Göttingen, Berlin and Frankfurt (describes the economic value of synthetic fuels for the Third Reich).
    WK

    Biographical history of technology > Bergius, Friedrich Carl Rudolf

  • 5 Senefelder, Alois

    SUBJECT AREA: Paper and printing
    [br]
    b. 6 November 1771 Prague, Bohemia (now Czech Republic)
    d. 26 February 1834 Munich, Germany
    [br]
    German inventor of lithography.
    [br]
    Soon after his birth, Senefelder's family moved to Mannheim, where his father, an actor, had obtained a position in the state theatre. He was educated there, until he gained a scholarship to the university of Ingolstadt. The young Senefelder wanted to follow his father on to the stage, but the latter insisted that he study law. He nevertheless found time to write short pieces for the theatre. One of these, when he was 18 years old, was an encouraging success. When his father died in 1791, he gave up his studies and took to a new life as poet and actor. However, the wandering life of a repertory actor palled after two years and he settled for the more comfortable pursuit of playwriting. He had some of his work printed, which acquainted him with the art of printing, but he fell out with his bookseller. He therefore resolved to carry out his own printing, but he could not afford the equipment of a conventional letterpress printer. He began to explore other ways of printing and so set out on the path that was to lead to an entirely new method.
    He tried writing in reverse on a copper plate with some acid-resisting material and etching the plate, to leave a relief image that could then be inked and printed. He knew that oily substances would resist acid, but it required many experiments to arrive at a composition of wax, soap and charcoal dust dissolved in rainwater. The plates wore down with repeated polishing, so he substituted stone plates. He continued to etch them and managed to make good prints with them, but he went on to make the surprising discovery that etching was unnecessary. If the image to be printed was made with the oily composition and the stone moistened, he found that only the oily image received the ink while the moistened part rejected it. The printing surface was neither raised (as in letterpress printing) nor incised (as in intaglio printing): Senefelder had discovered the third method of printing.
    He arrived at a workable process over the years 1796 to 1799, and in 1800 he was granted an English patent. In the same year, lithography (or "writing on stone") was introduced into France and Senefelder himself took it to England, but it was some time before it became widespread; it was taken up by artists especially for high-quality printing of art works. Meanwhile, Senefelder improved his techniques, finding that other materials, even paper, could be used in place of stone. In fact, zinc plates were widely used from the 1820s, but the name "lithography" stuck. Although he won world renown and was honoured by most of the crowned heads of Europe, he never became rich because he dissipated his profits through restless experimenting.
    With the later application of the offset principle, initiated by Barclay, lithography has become the most widely used method of printing.
    [br]
    Bibliography
    1911, Alois Senefelder, Inventor of Lithography, trans. J.W.Muller, New York: Fuchs \& Line (Senefelder's autobiography).
    Further Reading
    W.Weber, 1981, Alois Senefelder, Erfinder der Lithographie, Frankfurt-am-Main: Polygraph Verlag.
    M.Tyman, 1970, Lithography 1800–1950, London: Oxford University Press (describes the invention and its development; with biographical details).
    LRD

    Biographical history of technology > Senefelder, Alois

  • 6 Young, Arthur

    [br]
    b. 11 September 1741 London, England
    d. 20 April 1820 Bradford, England
    [br]
    English writer and commentator on agricultural affairs; founder and Secretary of the Board of Agriculture (later the Ministry of Agriculture, Fisheries and Food).
    [br]
    He was the youngest of the three children of Dr Arthur Young, who was at one time Chaplain to the Speaker of the House of Commons. He learned Latin and Greek at Lavenham School, and at the age of 17 was apprenticed to a mercantile house, an occupation he disliked. He first published The Theatre of the Present War in North America in 1758. He then wrote four novels and began to produce the literary magazine The Universal Museum. After his father's death he returned home to manage his father's farm, and in 1765 he married Martha Allen.
    Young learned farming by experiment, and three years after his return he took over the rent of a 300 acre farm, Samford Hall in Essex. He was not a practical farmer, and was soon forced to give it up in favour of one of 100 acres (40.5 hectares) in Hertfordshire. He subsidized his farming with his writing, and in 1768 published The Farmer's Letters to the People of England. The first of his books on agricultural tours, Six Weeks Tours through the Counties of England and Wales, was published in 1771. Between 1784 and 1809 he published the Annals of Agriculture, one of whose contributors was George III, who wrote under the pseudonym of Ralph Robinson.
    By this time he was corresponding with all of influence in agricultural matters, both at home and abroad. George Washington wrote frequently to Young, and George III was reputed to travel always with a copy of his book. The Empress of Russia sent students to him and had his Tours published in Russian. Young made three trips to France in 1787, 1788 and 1789–90 respectively, prior to and during the French Revolution, and his Travels in France (1792) is a remarkable account of that period, made all the more fascinating by his personal contact with people differing as widely as Mirabeau, the French revolutionary leader, and King Louis XVI.
    Unfortunately, in 1811 an unsuccessful cataract operation left him blind, and he moved from London to his native Bradford, where he remained until his death.
    [br]
    Principal Honours and Distinctions
    Chairman, Agricultural Committee of the Society of Arts 1773: awarded three Gold Medals during his career for his achievements in practical agriculture. FRS. Honorary Member of the Dublin, York and Manchester learned societies, as well as the Economic Society of Berne, the Palatine Academy of Agriculture at Mannheim, and the Physical Society of Zurich. Honourary member, French Royal Society of Agriculture. Secretary, Board of Agriculture 1793.
    Bibliography
    His first novels were The Fair Americans, Sir Charles Beaufort, Lucy Watson and Julia Benson.
    His earliest writings on agriculture appeared as collected letters in a periodical with the title Museum Rusticum in 1767.
    In 1770 he published a two-volume work entitled A Course of Experimental Agriculture, and between 1766 and 1775 he published The Farmer's Letters, Political Arithmetic, Political Essays Concerning the Present State of the British Empire and Southern, Northern and Eastern Tours, and in 1779 he published The Tour of Ireland.
    In addition he was author of the Board of Agriculture reports on the counties of Suffolk, Lincoln, Norfolk, Hertford, Essex and Oxford.
    Further Reading
    J.Thirsk (ed.), 1989, The Agrarian History of England and Wales, Vol. VI (deals with the years 1750 to 1850, the period associated with Young).
    T.G.Gazeley, 1973, "The life of Arthur Young, 1741–1820", Memoirs, American Philosophical Society 97.
    AP

    Biographical history of technology > Young, Arthur

См. также в других словарях:

  • Mannheim City Airport — Flughafen Mannheim IATA: MHG – ICAO: EDFM Summary …   Wikipedia

  • Mannheim–Stuttgart high-speed railway — Line length: 99 km (61.5 mi) …   Wikipedia

  • Mannheim Tornados — Founded in 1975 Mannheim Team logo League affiliations Baseball Bundesliga Bundesliga Süd …   Wikipedia

  • Mannheim (disambiguation) — Mannheim or Manheim may refer to: Contents 1 Places 2 People 3 Other 4 See also Places Mannheim, a city in Germany …   Wikipedia

  • Mannheim gold — Mann heim gold [From Mannheim in Germany, where much of it was made.] A kind of brass made in imitation of gold. It contains eighty per cent of copper and twenty of zinc. Ure. [1913 Webster] …   The Collaborative International Dictionary of English

  • Mannheim — This article is about the city in Germany. For other uses, see Mannheim (disambiguation). Mannheim View of Mannheim s Centre …   Wikipedia

  • Mannheim–Karlsruhe–Basel railway — Rhine Valley Railway (Rheintalbahn) Route number: 665 (Mannheim–Heidelberg) 701 (Heidelberg–Karlsruhe) 702 (K …   Wikipedia

  • Mannheim-Stuttgart high-speed rail line — The Mannheim Stuttgart high speed rail line is a 99 km long railway line in Germany, connecting the cities of Mannheim and Stuttgart. It was officially handed over for operations on 9 May 1991 and the first InterCityExpress ran on it on 2 June.… …   Wikipedia

  • Mannheim — 49°29′N 08°28′E / 49.483, 8.467 …   Wikipédia en Français

  • Mannheim Steamroller — Genres New Age, holiday music Years active 1974–present Labels American Gramaphone Website MannheimSteam …   Wikipedia

  • MANNHEIM — MANNHEIM, city in Baden, Germany. Jews first settled in Mannheim (which was founded in 1606) around 1652, and the first rabbi, Naphtali Herz, served from 1657 to 1671. The community was granted a highly favorable charter in 1660. A cemetery was… …   Encyclopedia of Judaism

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»